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Abstract. Certain exact odd and even wavefunctions for the potential x2 + Ax2,/( 1 + gx’), 
x E (--CO, m) are obtained. The coefficients of the wavefunctions and expressions for the 
energies are obtained using the symbolic manipulation code REDUCE. The chief use of 
these results is to provide a check for the effectiveness of numerical algorithms. The results 
supplement those of Flessas for the same potential on x E (0, a). 

1. Introduction 

The eigenvalue problem 

y”+ [ E  -x ’  - AX’/( 1 + g x ’ ) ] ~  = O  (1.1) 

(where g L 0) and its three-dimensional analogue have attracted some attention in 
recent years. Flessas (1981, 1982) obtained some exact solutions when E and A are 
specifically related to g. He considered the problem on the interval ( 0 , ~ ) .  In this 
paper we study the potential on the interval (-CO, CO) and provide a definite procedure 
for the calculation of odd and even eigenstates. In the process we explain an observation 
made in Flessas (1981) to the effect that in the limit g+O the nth wavefunction for 
(1.1) apparently reduces to the ( n  -2)th wavefunction for the harmonic oscillator. 

The eigenvalue problem (1.1) occurs in two areas of physical interest. In quantum 
field theory (1.1) becomes a one-dimensional Schrodinger equation associated with a 
zero-dimensional field theory which has applications in elementary particle physics. 
In laser physics (1.1) is obtained by the reduction of the Fokker-Planck equation of 
a single-mode laser under appropriate conditions (see Kaushal 1979 and references 
therein). The eigenvalues and eigenfunctions have been calculated numerically by 
Mitra (1978) and Bessis and Bessis (1980). The convergence of the fixed-point 
expansion was proven by Znojil (1984). Since the exact solutions obtained require a 
definite relationship between A and g, in general for a given permissible potential one 
may find just one eigenvalue. Thus in practice numerical methods must be used. Apart 
from the intrinsic interest of solving an eigenvalue problem exactly even if under 
restricted conditions, our solutions provide an opportunity to check numerical results 
by comparing them with precise results. This is in line with previous analyses we have 
made of polynomial anharmonic oscillators (Leach 1984, 1985). 
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2. Structure of the exact wavefunction 

In our previous study (Leach 1985) of one-dimensional anharmonic oscillators in 
which the anharmonicity was expressed as a polynomial in x, the wavefunction was 
found to be of the form 

Y = f ( x )  exp(-h(x) )  (2.1) 

where f and  h were polynomials in x with the highest power in h being even and  
having a positive coefficient. This is not the case with (1.1) since, i f f  is of degree M 
and h of degree 2 N + 2 ,  (1.1) (multiplied by (1+gx2))  has a single term of degree 
M + 4 N  + 4 in x and  so its coefficient is zero. By a recursive argument it follows that 
N = 0. This is confirmed by examining the asymptotic behaviour of (1.1) which gives 
y-exp(-ix2).  Since the potential in (1.1) is even, the wavefunction is either even or  
odd. Normally one would make the ansatz that the wavefunction has the form 
P,(x) exp(-ix2) where P, is an even or  odd polynomial. However, when one examines 
the wavefunction for small values of N, the factor (1  + gx2) is found. This leads us to 
revise the conventional ansatz and assume that the wavefunction has the form 

N 
y ( x )  = C C , X ~ " + ~ ( I  +gx') exp( - fx2)  

n = O  

where S is zero or  one depending upon whether we are looking for even or odd 
wavefunctions. From general Sturm-Liouville theory, for real x, y ( x )  has only simple 
zeros and  so co f 0. 

Substituting (2.2) into (1.1) and multiplying by 1 +gx2, we separate coefficients of 
different powers of x. Since the coefficient of the highest power must be zero, the 
value of A is given by 

A = -g [4 (N+ 1) + 2 S  + 1 - E ]  (2.3) 

i.e. A depends upon the eigenvalue. Thus we expect to obtain only one eigenstate per 
potential unless it happens that for different choices of N we obtain the same value 
of A. We return to this point below. With A given by (2.3), we obtain the following 
recurrence relation for the coefficients c,: 

c,+, = -[(2n+6+1)(2n+~+2)1-'{[(2n+~+1)(2n+6+2)g-2(2n+6)+~-l]c, 

+ 4g( N + 1 - n ) ~ , - , }  n = 0 ,  N - 1  (2.4) 

and  we take c-, to be zero. 
The eigenvalues are obtained from the solutions of the equation 

[ (2 N + 6 + 1 ) ( 2 N  + 6 + 2)g - 2( 2 N  + 6 )  + E - l ] ~ ,  + 4 g ~ N -  I = 0 (2.5) 

which follows from (2.4) with cNr l  = 0. This gives an  equation in E and g which is to 
be solved for E to find the eigenvalues. 

The actual calculation of the coefficients is readily undertaken by a simple REDUCE 
procedure. They rapidly become very complex as N increases. However, REDUCE 
handled the calculations without any difficulty, the time of computation being of the 
order of 850ms on an  IBM 370K to calculate all the c for N = 0 ,  6 .  
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3. More than one eigenvalue per potential 

In 0 2 we mentioned the possibility that this method could provide more than one 
eigenvalue per potential. It is evident that for given values of N and 6 this will not 
be the case as the different values of E give different A and so different potentials. If 
we wish to obtain the same A for a choice of NI ,  6, and N z ,  S2 then must be related 
to E ,  by 

(3.1) 

We can give closed form expressions for E in terms of g only for low values of N. If 
we restrict our attention to N = 0, 1, we find that the same value of A does occur for 
specific values of g. Setting NI = 0, N2 = 1, 6,  = 0 and SZ = 1, (3.1) becomes 

(3.2) 

E 2  = E ,  +4(N,- N,)+2(6,-  6, ) .  

~2 = E ,  + 6. 

In terms of g we calculate that 

E ,  = 1 -2g 

* (49g2 - 4g + 4)”2 = g + 2. 

E 2  = 5 -3g * (49g2 -4g +4)1’2. (3.3) 

Substituting these expressions into (3.2) we obtain 

(3.4) 

As g 2 0  we must take the positive root in (3.2) and find that a non-trivial solution 
(i.e. g f 0) occurs if g = i. Hence we find that the potential 

V ( X )  = x Z - x 2 / ( l 8 + 3 x 2 )  (3.5) 

E o  = 5 = 6: (3.6) 

has the eigenvalues 
, 

with the corresponding wavefunctions (unnormalised) 

(3.7) 

i.e. we have the ground state and the third excited state. (We have replaced E ,  and 
by and E~ in the normal practice of using the subscript to indicate the energy level. 
A priori we do  not know which states are going to be obtained.) Likewise for the 
choice NI = 0, N2 = 1, 6, = 1 and = 0 we find that g = f and for 

V(X) =xZ-8x2/ (3+2x2)  (3.8) 

E ,  = -1 E Z =  1 

+, = x(1 +$x2) exp(-fx’) 

 CL^= (1 - fx2)(1 + jx3)  exp(-fx2) 

(3.9) 

(3.10) 

i.e. the first and second excited states. One could continue on searching for such 
instances, but the going becomes tougher. For N ,  = 0, 6 ,  = 0, N2 = 2 and S2 = 0, there 
is no positive g which gives equal A. For N ,  = 0, 6, = 1, N2 = 2 and a2 = 0, the value 
of g is 1.2918.. . and that of A, -15.1797.. . . A calculation of the coefficients c ,  and 
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c2 for the N2 = 2 shows that the wavefunction has only two zeros and  so we have the 
first and  second excited states with 

E ,  = -4.7508.. . E Z =  1.2491 . . . (3.11) 

t,b,(x)=x(1+l.2918x2) exp(-ix2) 
(3.12) 

t,h2(x) = ( 1 -  1.4664~~-3.1278x4)(1+1.2918x2) exp(-fx2). 

4. Dependence of eigenvalues on g 

In the simple example discussed in § 3 for which it was possible to write E in terms 
of g in closed form (see (3.3)) it is evident that the asymptotic dependence of E on g 
is linear. In general, it is not possible to obtain such closed form expressions and, 
indeed, the equations relating E and g become very complex even for small N. However, 
it is a simple matter to obtain numerical values for E given a value of g. If one plots 
E against g for various values of N, it is evident that (i) E is asymptotically linear in 
g with the asymptotic behaviour becoming well established for g < 1 in the case N = 5 
and (ii) the constant multiplier becomes less negative the higher the state becomes. 
The dominance of the linear dependence of E on g is easy to see from a table of 
differences. In the case of N = 5 and S = 0 with g incrementing by steps of 1, in the 
range 1 9 S g S 3 1 ,  the first difference was around -132 and the second difference of 
the order of one thousandth of that. From (2.3) it is clear that asymptotically A will 
be quadratic in g. 

5. Conclusion 

We have seen that analytic solutions of the eigenvalue problem (1.1) can be found in 
a systematic way when E and A are related to g. Generally there is only one eigenvalue 
found for a given A since A depends upon E.  However, by appropriate choices of N 
and g we can cover a wide variety of potentials of this class. This would be useful to 
check the accuracy of approximate procedures and  in particular to check the actual 
amount of computation required to give the desired accuracy. This may help to reduce 
the cost of numerical computations. 

In the introduction we mentioned an observation by Flessas (1981) that in the limit 
g+O the nth wavefunction reduces to the (n-2) th  wavefunction for the harmonic 
oscillator. In fact this is not the case. As g + 0, the nth wavefunction tends smoothly 
to the nth wavefunction of the harmonic oscillator. The reason is found in § 2 in which 
it was observed that each wavefunction contained a non-zero factor (1 + gx2). This 
means that the nth wavefunction has a polynomial of degree n + 2  multiplying the 
exponential term. As g becomes zero the degree of the polynomial becomes n, but the 
number of real zeros remains unchanged. 
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